p-adic numbers and the Hasse-Minkowski Theorem

Tahseen Rabbani

Abstract

Given a polynomial $f \in \mathbb{Z}[x_1, x_2, \dots, x_n]$, determing the existence of integral roots is a standard topic covered in an introductory number theory course. In this paper, we will extend our considerations to roots in \mathbb{Q} . Using p-adic numbers, the existence of rational solutions can be readily acertained under select conditions, especially for quadratic forms.

1 Introduction

Let p be a prime number. For any integer, x, we can represent it in base p as a power series expansion, that is,

$$x = \sum_{n=0}^{k} a_n p^n \tag{1}$$

where $a_n \in [0, p-1]$ and there exists some N, such that for all n > N, $a_n = 0$. We call such a representation a p-adic expansion. As we will see shortly, it is convenient to denote the p-adic expansion of an integer as a decimal, ... $a_m \ldots a_2 a_1 a_0$, where a_m is the last positive coefficient in the series representation. There is a one-to-one correspondence between the series representation and decimal representation. Furthermore, such p-adic expansions over \mathbb{Z} preserve addition and multiplication, that is, if $(x)_p$ denotes the p-adic expansion of $x \in \mathbb{Z}$, we have that for $x, y \in \mathbb{Z}$, $(x+y)_p=((x)_p+(y)_p)_p$ and $(x\cdot y)_p=((x)_p(y)_p)_p$.

Addition and multiplication of two p-adic expansions proceeds componentwise, ensuring coefficients are in [0, p-1] by "carrying" any term p^n with coefficient $a_n > p-1$ to higher powers of p. We present examples of both operations.

1.1 Addition

Let p=7. Consider $x=6+6\cdot 7+6\cdot 7^2+0\cdot 7^3+0\cdot 7^4+\ldots$ and $y=1+0\cdot 7+0\cdot 7^2+0\cdot 7^3+\ldots$ After converting both numbers to their respective decimal representations, addition proceeds as follows:

$$\begin{array}{r} \dots 00666 \\ + \dots 00001 \\ \hline \dots 01000 \end{array}$$

Which, converting back to series representation, yields the representation of 0 in the 7-adic's.

1.2 Multiplication

Let p=3. We will find the 3-adic representation of 200 by calculating $20 \cdot 10$ in base 3.

Note that $20 = 2 + 0 \cdot 3 + 2 \cdot 3^2 + 0 \cdot 3^3 + \dots$ and $10 = 1 + 0 \cdot 3 + 1 \cdot 3^2 + 0 \cdot 3^3 + \dots$, so we have

$$\begin{array}{c} \dots 00202 \\ \times & \dots 00101 \\ \hline \dots 00202 \\ + \dots 00000 \\ + \dots 20200 \\ \hline \dots 21102 \end{array}$$

Converting back to a series a representation, we find that $2 + 0 \cdot 3 + 1 \cdot 3^2 + 1 \cdot 3^3 + 2 \cdot 3^4 = 200$.

1.3 Representation of -1

Given that p-adic expansions preserve multiplication in \mathbb{Z} , we simply need to derive the p-adic expansion of -1 to acquire the p-adic expansions of negative integers. By preservation of addition, we should have that

$$((1)_p + (-1)_p)_p = \sum_{n=0}^{\infty} 0 \cdot p^n$$

This implies we should have a continuous carry to the right. So, $-1 = (p-1) + (p-1)p + (p-1)p^2 + (p-1)p^3 + \dots$, since,

$$1 + (p-1) + (p-1) \cdot p + (p-1) \cdot p^{2} + (p-1) \cdot p^{3} + \dots =$$

$$= p + (p-1)p + (p-1)p^{2} + (p-1)p^{3} + \dots$$

$$= p^{2} + (p-1)p^{2} + (p-1)p^{3} + \dots$$

$$= \dots$$

$$= 0$$

1.4 \mathbb{Z}_n

It is clear any power series representation of an integer base p must terminate at some finite power of p. However, if one allows for infinite series (with index ≥ 0), the class of p-adic integers are obtained.

Definition 1.1 Let p be a prime number. The p-adic integers consists of the set

$$\mathbb{Z}_p = \{ \sum_{n=0}^{\infty} a_n p^n : 0 \le a_n \le p - 1 \}$$
 (2)

It is clear that every integer's p-adic representation is in \mathbb{Z}_p . However, one may also find the p-adic representation of non-integral rational numbers in \mathbb{Z}_p . For example, in base 5

$$\frac{-1}{4} = \frac{1}{1-5} = 1 + 5 + 5^2 + 5^3 + \dots$$

which is clearly in \mathbb{Z}_p . Note that this derivation is a simple application of the sum formula for infinite geometric series. With respect to carry-over addition and multiplication as previously defined, \mathbb{Z}_p forms a ring and the p-adic representations of \mathbb{Z} form a subring of \mathbb{Z}_p .

1.5 Representation of Rational Numbers

So far we have discussed p-adic expansions of the integers and rational numbers which strictly assume positive powers of p in their representations. However, we can generalize and allow for terms which contain negative powers of p, in which case, we can uniquely represent every element of \mathbb{Q} . It is important to note that p-adic expansions of rational numbers preserve multiplication and addition in \mathbb{Q} , and addition/multiplication over these expansions proceeds in the same manner as described before, maintaining the notion of digit "carrying." With these facts in mind, we will determine the coefficients in the p-adic expansion of an arbitrary rational number.

Definition 1.2 Let p be a prime number. The p-adic valuation of \mathbb{Z}

$$v_p: \mathbb{Z} - \{0\} \to \mathbb{Z}$$

is defined as the following: for $x \in \mathbb{Z} - \{0\}$, $v_p(x) = n \in \mathbb{N}$, such that $x = p^n x'$ and $p \nmid x'$. The p-adic valuation on \mathbb{Z} is more commonly known as $\operatorname{ord}_p(x)$. We may extend v_p to \mathbb{Q} by letting $v_p(\frac{a}{b}) = v_p(a) - v_p(b)$ for $\frac{a}{b} \in \mathbb{Q}$, $\frac{a}{b} \neq 0$.

By convention, we let $v_p(0) = +\infty$.

Example We calculate $v_7(56/29)$.

$$56 = 7 \cdot 8$$
 and $29 = 7^0 \cdot 29$. So,

$$v_7(56/29) = v_7(56) - v_7(29) = 1 - 0 = 1$$

With v_p at our disposal, we describe a procedure to determine the p-adic coefficients of a fraction $\neq 0$.

For $x \in \mathbb{Q}$, if $n_0 = v_p(x)$, then $x = \sum_{n=n_0}^{\infty} a_n p^n$, where $0 \le a_n \le p-1$.

$$x = a_{n_0} p^{n_0} + a_{n_0+1} p^{n_0+1} + a_{n_0+2} p^{n_0+2} + \dots$$

$$= p^{n_0} (a_{n_0} + a_{n_0+1} p + a_{n_0+2} p^2 + \dots)$$

$$= p^{n_0} \cdot \frac{x_1}{y_1}$$

where $p \nmid x_1, p \nmid y_1$, and $gcd(x_1, y_1)=1$. Then,

$$\frac{x_1}{y_1} = a_{n_0} + a_{n_0+1}p + a_{n_0+2}p^2 + \dots$$

Reducing modulo p,

$$x_1 \cdot y_1^{-1} \equiv a_{n_0} + a_{n_0+1}p + a_{n_0+2}p^2 + \dots \mod p$$

 $\equiv a_{n_0}$

Having solved for a_{n_0} , we have

$$\frac{x_1}{y_1} - a_{n_0} = p(a_{n_0+1} + a_{n_0+2}p + a_{n_0+3}p^2 + \dots)$$
$$= p \cdot \frac{x_2}{y_2}$$

where $p \nmid x_2, p \nmid y_2$, and $gcd(x_2, y_2)=1$. Then,

$$\frac{x_2}{y_2} = a_{n_0+1} + a_{n_0+2}p + a_{n_0+3}p^2 + \dots$$

Reducing modulo p,

$$x_2 \cdot y_2^{-1} \equiv a_{n_0+1} + a_{n_0+2}p + a_{n_0+3}p^2 + \dots \mod p$$

$$\equiv a_{n_0+1}$$

At first glance, this procedure seems rather useless in presenting a concise series or decimal representation of a rational number for which the expansion contains infinitely many non-zero terms, but in fact, the *p*-adic expansion of a rational number has repeating digits, so we continue this process so forth until the period is discovered, and appropriately denote the expansion as a repeating decimal (or series).

Proposition 1.3 If $x \in \mathbb{Q}$, then the p-adic expansion of x has repeating coefficients.

Proof. If we can show for $x = \frac{a}{b} \in \mathbb{Q}$ that

$$x = c + \frac{d}{1 - p^r}$$

for $c, d \in \mathbb{Z}^+$, then we shall have the desired conclusion, since the *p*-adic expansion of c and d will have a finite number of nonzero terms, and the *p*-adic expansion of $\frac{1}{1-p^r}$ has repeating coefficients (to see this, derive this expansion as a geometric series).

We consider the scenario where $p \nmid b$ since if p does divide b and $b = p^r b'$, then we analyze a/b' and the extra factor of $1/p^r$ will not eliminate the possibility of repeating coefficients (since its p-adic expansion only has one non-zero term). So let $-1 \leq a/b \leq 0$, since if this is not the case, we can add an integer, j, such that a/b+j is between -1 and 0, and since j has a finite nonzero expansion, this will not change the possibility of the repeating coefficients.

Now we consider $\mathbb{Z}/b\mathbb{Z}$. Since $p \nmid b$, we have that the order of p in $\mathbb{Z}/b\mathbb{Z}$ is b, so there exists m, n > 0 such that $p^m \equiv p^n \mod b$. Without loss of generality, let m > n, then $p^{m-n} \equiv 1 \mod b$, hence there is a d such that $db = p^{m-n} - 1$. Thus,

$$x = \frac{a}{b} = \frac{ad}{bd} = \frac{-ad}{1 - p^{m-n}}$$

. Hence, $x = \frac{a}{b}$ must have a repeating expansion.

Since every rational number has a repeating p-adic expansion, the algorithm presented above would be used to derive coefficients until the period is exhibited.

2 The Field of p-adic Numbers

A complete characterization of the p-adic numbers,

$$\mathbb{Q}_p = \{ \sum_{n=n_0}^{\infty} a_n p^n : n_0 \in \mathbb{Z}, 0 \le a_n \le p-1 \}$$
 (3)

In other words, \mathbb{Q}_p is the set of all finite-tailed Laurent series in powers of p. By finite-tailed, we mean the expansion is finite to the left. With respect to addition and multiplication as described before ("carrying"), \mathbb{Q}_p forms a field. We would, however, like to describe the topology of \mathbb{Q}_p . To do this, we will first develop an absolute value for the p-adic numbers.

2.1 The *p*-adic absolute value

An absolute value for a field \mathbb{K} is a function $|\cdot|:\mathbb{K}\to\mathbb{R}_+$ which satisfies the following,

- i) $|x| = 0 \Leftrightarrow x = 0$
- ii) |xy| = |x||y| for all $x,y \in \mathbb{K}$
- iii) $|x+y| \le |x| + |y|$ for all $x,y \in \mathbb{K}$

Furthermore, an absolute value is called non-archimidean if,

iv) $|x+y| \le \max\{|x|, |y|\}$ for all $x,y \in \mathbb{K}$. It is clear that this property implies iii), hence this is a stronger condition.

Definition 2.1 Let \mathbb{K} be a field and $|\cdot|$ an absolute value over \mathbb{K} . The distance between two elements $x,y \in \mathbb{K}$, is defined as d(x,y) := |x-y|. We call this distance function the metric induced by $|\cdot|$.

Definition 2.2 For $x \in \mathbb{Q}$, the p-adic absolute value, $|\cdot|_p$, of x is defined as follows,

$$|x|_p = p^{-v_p(x)}$$

if $x \neq 0$, and $|0|_p = 0$.

Lemma 2.3 $|\cdot|_p$ defines a non-archimedean absolute value on \mathbb{Q} .

Proof. For the first property of an absolute value, $|0|_p = 0$ by definition, and for a nonzero $x \in \mathbb{Q}$, it is not possible for $p^{-v_p(x)} = 0$ since p is nonzero. For the second property, let $x,y \in \mathbb{Q}$. Then, $|x|_p|y|_p = p^{-v_p(x)-v_p(y)}$. By the Fundamental Theorem of Arithmetic, $v_p(xy) = v_p(x) + v_p(y)$, so $|xy|_p = p^{-v_p(x)-v_p(y)} = |x|_p|y|_p$. Next, we show $|\cdot|_p$ is non-archimedean, which will subsequently induce property iii). If x = 0, y = 0, or x + y = 0 then

property iv) clearly follows. So let $x = \frac{a}{b}$, $y = \frac{c}{d}$, $x + y = \frac{ad + bc}{bd}$ and

$$\begin{aligned} v_p(x+y) &= v_p(ad+bc) - v_p(b) - v_p(d) \\ &\geq \min(v_p(ad), v_p(bc)) - v_p(b) - v_p(d) \\ &= \min(v_p(ad), v_p(bc)) - v_p(b) - v_p(d) \\ &= \min(v_p(a) - v_p(b), v_p(c) - v_p(d)) \\ &= \min(v_p(x), v_p(y)) \end{aligned}$$

So,

$$|x+y|_p = \frac{1}{p^{v_p(x+y)}}$$

$$\leq \frac{1}{p^{\min(v_p(x),v_p(y))}}$$

$$= \max(|x|_p,|y|_p)$$

Hence, $|\cdot|_p$ is a non-archimedean absolute value.

2.2 A Completion of \mathbb{Q} to \mathbb{Q}_p

Definition 2.4 Let \mathbb{K} be a field and $|\cdot|$ and absolute value over \mathbb{K} . A sequence of elements x_n is called a Cauchy sequence if for all $\epsilon > 0$, there exists an $M \in \mathbb{N}$ such that for all $n,m \geq M$, $|x_n - x_m| < \epsilon$. We refer to \mathbb{K} as **complete** if every Cauchy sequence of elements in \mathbb{K} has a limit.

 \mathbb{Q} is not complete with respect to the standard absolute value. To see this, note that we can construct a sequence converging to $\sqrt{2}$. In fact, \mathbb{R} is a completion of \mathbb{Q} with respect to the standard absolute value. We will see that with respect to $|\cdot|_p$, \mathbb{Q}_p is a completion of \mathbb{Q} .

Definition 2.5 Let $|\cdot|_p$ be the p-adic absolute value on \mathbb{Q} . Let \mathcal{C} (or $\mathcal{C}_p(\mathbb{Q})$) denote the set of all Cauchy sequences in \mathbb{Q} with respect to $|\cdot|_p$.

$$C = C_p(\mathbb{Q}) = \{(x_n) : (x_n) \text{ is a Cauchy sequence with respect to } | \cdot |_p\}$$

Proposition 2.6 Defining

$$(x_n) + (y_n) = (x_n + y_n)(x_n) \cdot (y_n) = (x_n y_n)$$

turns C into a commutative ring with unity.

We can embed \mathbb{Q} in \mathcal{C} simply by sending a rational x to the constant sequence (x) in \mathcal{C} . We have yet to develop a machinery by which we are able to classify sequences which converge to the same limit as equivalent. The development of a particular quotient ring will help achieve this.

Definition 2.7 Let $\mathcal{N} \subset \mathcal{C}$ be the ideal

$$\mathcal{N} = \{(x_n) : x_n \to 0\} = \{(x_n) : \lim_{x \to \infty} |x|_p = 0\}.$$

Lemma 2.8 \mathcal{N} is a maximal ideal of \mathcal{C} .

To "mod out" equivalent sequences in \mathcal{C} , we simply take the quotient of the ring \mathcal{C} by its ideal \mathcal{N} . Since \mathcal{N} is maximal, this will form a field. In fact, we define

$$\mathbb{Q}_p = \mathcal{C} / \mathcal{N}$$

This refined construction of \mathbb{Q}_p represents a completion of \mathbb{Q} to \mathbb{Q}_p . We will not present a complete algebraic argument for this fact.

3 Local-Global Principle

Given an equation $f \in \mathbb{Z}[x_1, x_2, \dots, x_n]$, finding roots in \mathbb{Z} is a standard question in Diophantine analysis. A natural extension of this question is whether roots exist in \mathbb{Q} . The development of p-adic numbers helped to define existence criterion in regards to this question. The local-global principle asserts that the existence or nonexistence of roots to such equations in \mathbb{Q} (global) can be detected by searching for roots in \mathbb{Q}_p for $p \leq \infty$. By convention, $\mathbb{Q}_{\infty} = \mathbb{R}$.

It simple to embed \mathbb{Q} in \mathbb{Q}_p . Simply send a rational x to its p-adic expansion. It immediately follows that if there is no solution in \mathbb{Q}_p for some p, then there is no solution in \mathbb{Q} . The converse, however, is not true. As an example, we will show $(X^2 - 2)(X^2 - 17)(X^2 - 34)$ has a root in \mathbb{Q}_p for $p \leq \infty$ but not in \mathbb{Q} . Before we explicitly show this, an important theorem is established.

Definition 3.1 The p-adic integers is defined as the set

$$\mathbb{Z}_p = \{ x \in \mathbb{Q}_p : |x|_p \ge 1 \}$$

Equivalently, this set consists entirely of expansions with no negative powers of p.

Theorem 3.2 (Hensel's Lemma) Let $f(X) \in \mathbb{Z}_p[X]$ and $\alpha \in \mathbb{Z}_p$ satisfy the following conditions,

$$f(\alpha) \equiv 0 \mod p$$

and

$$f'(\alpha) \not\equiv 0 \mod p$$

where f'(X) is the formal derivative of f(X). Then there exists an α_1 such that $f(\alpha_1) \equiv 0$ and $\alpha_1 \equiv \alpha \mod p$.

Lemma 3.3 We may replace the second condition of Hensel's lemma, $f'(\alpha) \not\equiv 0 \mod p$, with the weaker condition $|F(\alpha_1)|_p < |F'(\alpha_1)_p|^2$.

Example $(X^2 - 2)(X^2 - 17)(X^2 - 34)$ has roots in \mathbb{Q}_p for $p \leq \infty$, but no roots in \mathbb{Q} .

Case 1 \mathbb{Q}_p for $p \neq 2, 17$

For such p, if 2 or 17 is a square modulo p, then we have an α in \mathbb{Z}_p such that $\alpha^2 - 2$ (or $\alpha^2 - 17$) $\equiv 0 \mod p$. Furthermore, $f'(\alpha) = 2\alpha \not\equiv 0 \mod p$, since $p \nmid 2$, and if $p \mid \alpha$, we would have -2 (or -17) $\equiv 0 \mod p$. So we may apply Hensel's lemma and conclude there is a solution in \mathbb{Z}_p to $X^2 - 2 = 0$ (or $X^2 - 17 = 0$), thus this is also a root of the original equation. Otherwise, if neither 2 or 17 is a square modulo p, by a standard property of quadratic residues, their product is a square modulo p, so we have a solution, $\alpha \in \mathbb{Z}_p$ such that $\alpha^2 \equiv 0 \mod p$. By the same argument above, $2\alpha \not\equiv 0 \mod p$, so we may apply Hensel's Lemma.

Case 2 \mathbb{Q}_2

We consider the equation $f(X) = X^2 - 17 = 0$. We observe that $X^2 - 17 \equiv 0 \mod p$ is equivalent to $X^2 - 1 \equiv 0 \mod p$, which indeed has a solution in \mathbb{Z}_p , $\alpha = 1$. Furthermore $|f(\alpha)|_2 = |-16|_2 = 1/16 < |f'(\alpha)|_2^2 = |2|_2^2 = 1/4$. So by the strengthened version of Hensel's lemma, f has a root in \mathbb{Z}_2 . Clearly, this is also a root to the original equation.

Case 3 \mathbb{Q}_{17}

We consider the equation $f(X) = X^2 - 2$. 2 is a square modulo 17, since $6^2 \equiv 36 \equiv 2 \mod 17$, so there is a root in \mathbb{Z}_{17} which satisfies the first hypothesis of Hensel's lemma. Taking the derivative, we see that $2(6) \not\equiv 0 \mod 17$, so there is a root of f(X) in \mathbb{Z}_{17} , by Hensel's lemma. Clearly, this is also a root of our original equation.

Case 4
$$\mathbb{Q}_{\infty} = \mathbb{R}$$

We have many roots to this equation in \mathbb{R} , none of which are rational, so this proves our claim.

With this in mind, we will explore scenarios in which the p-adic fields help us determine the existence of rational solutions to equations known as quadratic forms.

Definition 3.4 For a field \mathbb{F} , a quadratic form is a homogeneous polynomial $\in \mathbb{F}[x_1, x_2, \dots, x_n]$ of degree 2.

We now introduce an important result connecting p-adic numbers to quadratic forms.

Theorem 3.5 (Hasse-Minkowski) Let

$$f(X_1, X_2, \dots, X_n) \in \mathbb{Q}[X_1, X_2, \dots, X_n]$$

be a quadratic form. Then f has a non-trivial root in \mathbb{Q}^n if and only if it has a non-trivial root in \mathbb{Q}_p^n for $p \leq \infty$.

Example We show that $f(x, y, z) = 5x^2 + 7y^2 - 13z^2$ has a non-trivial rational root.

Case 1 \mathbb{Q}_p , where $p \neq 2, 5, 7, 13$.

To work with this case, we establish an importance proposition.

Proposition 3.6 Let \mathbb{K} be a finite field. Then every quadratic form over \mathbb{K} in at least 3 variables has a non-trivial root.

With this proposition at our disposable, we establish there is a nontrivial root (x_0, y_0, z_0) of f modulo p (since the integers modulo p form a finite field). Assume $p \nmid x_0$ (we will see why this is a fair assumption). Then let

$$h(x) = 5x^2 + 7y_0^2 - 13z_0^2$$

h has a root, namely x_0 , modulo p. Furthermore, $h'(x_0) = 10x_0 = 2 \cdot 5 \cdot x_0 \not\equiv 0 \mod p$, since $p \nmid 2, 5, x_0$. So by Hensel's lemma, (x_0, y_0, z_0) lifts to a root of f in \mathbb{Z}_p . If we had assumed $p \nmid y_0$ or z_0 , it is easy to see why the derivatives would have posed no issue to apply Hensel's lemma.

Case 2 \mathbb{Q}_2

Set $y_0 = 0$ and $z_0 = 1$, then let

$$h(x) = 5x^2 + 7y_0^2 - 13z_0^2 = 5x^2 - 13$$

x=1 is a root of h(x) modulo 2. Furthermore, $|h(1)|_2 < |h'(1)|_2^2$, so by Hensel's lemma, we have root of f in \mathbb{Z}_2 .

Case 3 \mathbb{Q}_5

Set $x_0 = 0$, $y_0 = 2$, then let

$$h(z) = 5x_0^2 + 7y_0^2 - 13z^2 = 28 - z^2$$

z = 1 is a root of h(z) modulo 5. Furthermore, $h'(1) \equiv 1 \not\equiv 0 \mod 5$, hence we may apply Hensel's lemma. So there is a root of f in \mathbb{Z}_5 .

Case 4 \mathbb{Q}_7

Set $x_0 = 2$, $y_0 = 0$, then let

$$h(z) = 5x_0^2 + 7y_0^2 - 13z^2 = 20 - 13z^2$$

z = 1 is a root of h(z) modulo 7. Furthermore, $h'(1) \equiv 5 \not\equiv 0 \mod 7$, hence we may apply Hensel's lemma. So there is a root of f in \mathbb{Z}_7 .

Case 3 \mathbb{Q}_{13}

Set $x_0 = 3$, $z_0 = 0$, then let

$$h(y) = 5x_0^2 + 7y^2 - 13z_0^2 = 45 + 7z^2$$

y=1 is a root of h(y) modulo 13. Furthemore, $h'(1) \equiv 1 \not\equiv 0 \mod 13$, hence we may apply Hensel's lemma. So there is a root of f in \mathbb{Z}_{13} .

Case 4 $\mathbb{Q}_{\infty} = \mathbb{R}$

Set $x_0 = 0$ and let y_0 be some nonzero constant. Then clearly we will be able to find an appropriate z_0 in \mathbb{R} .

Since we have found roots of f for all \mathbb{Q}_p , by the Hasse-Minkowski theorem, there is a rational root of f.

Acknowledgements

I would like to express my gratitude to Dr. Mikhail Ershov for his feedback and assistance with this paper and the lecture I delivered on this topic.

References

[1] J. Hatley, *Hasse-Minkowski and the Local-to-Global Principle*, http://www.math.umass.edu/ hatley/Capstone.pdf

- [3] F. Gouvêa, p-adic Numbers: An Introduction, Springer. New York, NY, 1997.